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� DPM chemical composition is influenced by engine speed and load.
� The proportions of TC, inorganic elements and p-PAHs are 82 ± 9%, 6.3 ± 1.4% and 0.034 ± 0.013%.
� Three-ring and four-ring PAHs are the main constituents of the total p-PAHs mass.
� Significant correlations are found between some p-PAHs and between some inorganic elements and p-PAHs.
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This study investigated the chemical characteristics of the particulate matter emitted from a diesel
engine (Diesel Particulate Matter, DPM) and the correlations between polycyclic aromatic hydrocarbons
(PAHs) species as well as between PAHs and inorganic elements in DPM through dynamometer testing.
There were six sets of speed–load conditions. Engine speeds varied from 1000 to 1600 rpm, while engine
loadings were 60% and 100% of engine load. Total carbon accounted for 82 ± 9% of the total DPM mass,
followed by 15 inorganic elements (6.3 ± 1.4%), and 12 particle-phase PAHs (p-PAHs) (0.034 ± 0.013%).
The three-ring and four-ring p-PAHs constituted 54 ± 25% and 27 ± 19% of the total p-PAHs mass, respec-
tively, much higher than that of two-ring p-PAHs (11 ± 10%) and five-ring (9 ± 5%). The fluoranthene/(flu-
oranthene + pyrene) and benzo[a]anthracene/(benzo[a]anthracene + chrysene) ratios were below or in
the lower range of ambient ratios indicative of diesel vehicle emissions observed in previous studies with
on-board testing system. Strong positive correlation (r > 0.99, p < 0.05) among isomeric p-PAHs (between
phenanthrene and anthracene, as well as among benzo[a]pyrene, benzo[b]fluoranthene and benzo[k]flu-
oranthene) were observed. Furthermore, the weight percentages of some inorganic elements and p-PAHs
in total DPM were correlated.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction nickel and polycyclic aromatic hydrocarbons (PAHs), all of which
Vehicle emissions are one of the major sources of air pollution
in urban areas worldwide [1]. Of special concerns are diesel-pow-
ered vehicles that emit a complex mixture of toxic gaseous pollu-
tants and particulate matter (PM) [2]. Diesel vehicles contribute
significantly to the particulate air pollution burden, especially in
metropolitan areas of Asian developing countries [3,4].

Diesel Particulate Matter (DPM), defined as particulate matter
emitted from diesel engines, has significant health, atmospheric
and climate implications. Toxic species in DPM include arsenic,
are known to cause cancer [5,6]. Epidemiological studies have
demonstrated the correlations between exposure to roadway PM
and increasing risk of respiratory illnesses [7,8]. Therefore, the
chemical composition of DPM is important for the assessment of
the human health effects from exposure to diesel vehicles exhaust
[9].

DPM has been extensively investigated since the 1990s, includ-
ing emission factors [10,11], size distributions [12,13], and source
profiles [14,15]. Chassis dynamometer tests [16], tunnel experi-
ments [14,17], and on-board monitoring [18] have been widely
used to measure various pollutants emitted from diesel vehicles.
These studies offered original data of emission factors, size distri-
bution as well as PAHs proportion of vehicle particulate matter,
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Table 1
Design of dynamometer tests using a YC4G 180–200 Engine.

Test Engine
rotational
speed(rpm)

Engine
load(%)

Engine
torque(Nm)

Sampling
flow rate(L/
min)

Mass of
DPM(mg)

1 1000 100 773.0 100 1.55
2 1000 60 463.0 100 1.61
3 1200 100 781.3 100 1.84
4 1200 60 469.0 100 1.75
5 1600 100 757.0 100 1.29
6 1600 60 454.2 100 1.39

Table 2
Characteristics of the Yuchai YC4G180-200 engine.

Parameter Value

Structure Turbocharged 4 cylinder in line
Displacement 5.2 L
Maximum power 148 kW@2200 rpm
Maximum torque 781 Nm@1200 rpm
Minimum fuel consumption at full load 6196 g/kW h
Emission regulation China IIIa (equivalent to Euro III)

a Chemical composition of China III: total insoluble 6 2.5 mg/mL, sulfur con-
tent 6 350 ppm, 10% carbon residue on residuum 6 0.3%, ash content 6 0.01.

Table 3
Proportion of inorganic elements located in DPM in each test listed in Table 1, mean
wt% of DPM mass.

Elements Test

1a 2b 3a 4b 5a 6b

Na 0.68 0.64 0.40 0.35 0.65 0.25
Mg 0.56 0.25 0.34 0.14 0.25 0.17
Al 0.37 0.28 0.40 0.12 0.14 0.12
Si 0.92 0.75 1.7 0.12 0.46 0.12
S 1.1 0.97 1.3 1.6 1.5 1.4
K 0.31 0.17 0.17 N.D.* 0.61 0.19
Ca 3.7 1.8 2.7 1.4 2.2 1.8
V 0.0033 0.0010 0.0010 0.0010 0.0010 0.0010
Mn 0.0089 0.0060 0.0080 0.0040 0.0060 0.0030
Fe 0.55 0.47 0.64 0.64 0.34 0.24
Co 0.022 0.015 0.0070 0.020 0.013 0.015
Ni 0.065 0.0070 0.014 0.024 0.046 0.0030
Cu 0.020 0.018 0.017 0.0060 0.0230 N.D.*

Zn 0.052 0.22 0.14 0.34 0.21 0.39
Pb 0.0026 0.061 0.0020 0.0020 0.0020 0.0030
Total elements 8.3 5.6 7.7 4.8 6.5 4.7

* Not detected.
a 100% engine load.
b 60% engine load.
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which contributed to the development of strategies and techniques
for DPM control.

Previous studies have shown that the concentration and specia-
tion of DPM depend on various factors such as engine operating con-
ditions. Di et al. [19] used an ultra-low sulfur diesel blended with
ethanol as the fuel to analyze total DPM emissions under five engine
loads and two engine speeds. Ho et al. [20] quantified 17 PAHs in
ShingMun Tunnel, Hong Kong during summer and winter in 2003.
They found that there were significant correlations among PAHs.
In addition, the correlations between the particle-phase PAHs
(p-PAHs, the PAHs existed in particle-phase [20]) were higher than
those for gas-phase PAHs. For identifying the origin of PAHs in
ambient air, diagnostic ratios of individual PAHs species, such as
indeno [1, 2, 3-cd]pyrene/(indeno[1, 2, 3-cd]pyrene + benzo[g,h,i]-
perylene), benzo[a]anthracene/(benzo[a]anthracene + chrysene),
fluoranthene/(fluoranthene + pyrene), and benzo[a]anthracene/
benzo[g,h,i]perylene, have been considered effective tools [21–24].

The objective of this study is to investigate the effects of engine
speed and load on chemical characteristics of the total carbon,
inorganic and PAH components of DPM as well as the correlations
between different species in DPM. The exhaust samples were col-
lected from an urban bus diesel engine mounted on a bench testing
system. This research will further our knowledge about the emis-
sion characteristics of DPM.
2. Experimental methods

2.1. Drive cycles

The driving cycles used in this study were ‘point’ cycles [25] as
listed in Table 1. The ‘point’ cycles were based on operational data
collected from previous studies of actual driving cycles of buses in
Fig. 1. Experiments settings of the bench testing sy
some Chinese cities [26]. The engine speeds were set at 1000 rpm,
1200 rpm, 1600 rpm, and the engine loads were 60% and 100% of
engine load.
2.2. Bench testing system

The test engine was mounted on a bench testing system (AVL,
Graz, Austria) shown in Fig. 1. The system could perform both
stem (dotted portion was used in this study).



Fig. 2. Proportion of p-PAHs (wt% of total p-PAHs). Tests 1, 3, 5 were 100% engine load and Tests 2, 4. 6 were 60% engine load.

Table 4
Proportion of p-PAHs (wt% of total p-PAHs) in this study and in other studies, mean
values (±standard deviation).

PAHs This study Ho et al. [20] Shah et al. [34]

Naphthalene 7.4 ± 4.3 9 ± 10 25 ± 21
Acenaphthylene 1.3 ± 2.8 2.0 ± 6.0 1.2 ± 0.7
Fluorene 2.2 ± 2.6 1.3 ± 0.9 6.2 ± 3.0
Phenanthrene 22 ± 11 9.3 ± 1.1 16.3 ± 7.4
Anthracene 22 ± 7 1.9 ± 1.1 0.5 ± 0.3
Fluoranthene 9.5 ± 7.1 17 ± 10 8.7 ± 4.1
Pyrene 17 ± 10 24 ± 15 25 ± 12
Benzo[a]anthracene 1.0 ± 2.0 5.8 ± 5.8 1.2 ± 0.8
Chrysene 1.8 ± 2.5 11 ± 11 1.1 ± 0.9
Benzo[b]fluoranthene 3.7 ± 2.0 5.5 ± 9.2 0.9 ± 0.9
Benzo[k]fluoranthene 3.7 ± 2.0 2.5 ± 4.3 1.1 ± 1.2
Benzo[a]pyrene 8.8 ± 5.0 2.3 ± 3.8 1.1 ± 1.0
Acenaphthene N.D.* 6.0 ± 2.3 2.3 ± 1.1
Indeno [1, 2, 3-cd]pyrene N.D.* 0.1 ± 0.2 2.8 ± 3.9
Dibenzo[a,h]anthracene N.D.* 3.9 ± 6.6 3.3 ± 4.5
Benzo[g,h,i]perylene N.D.* 2.5 ± 4.2 3.7 ± 4.7

* Not detected.
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point cycle (this study) and driving cycle for engine emission mea-
surements. Before sampling, the engine was warmed up to full
power for 30 min. The exhaust samples were diluted and collected
from an urban bus diesel engine by CVS (constant volume sampling
system) and FFP4000 particle sampler mounted on a bench testing
system.
2.3. Test engine and fuel

A Yuchai YC4G180-200 diesel engine was used in this research.
It is a popular engine installed on many heavy-duty urban buses in
Tianjin, China. Table 2 lists specifications of this engine. China III
Table 5
Diagnostic ratios of fluoranthene/(fluoranthene + pyrene) and benzo[a]anthracene/(benzo[

Source of PAHs Fluoranthene/(fluoranthene + pyrene) B

Gasoline vehicle 0.40
0
0

Diesel vehicle 0.25–0.5 0
0.60–0.70 0
0.43 0

0

(equivalent to Euro III) diesel was used in this study [27]. All fuels
came from the same batch of the same supplier, and were mixed
well before each use.
2.4. PM sampling and analysis

Each sampling process was repeated twice, one with quartz fi-
ber membranes (PALL, Washington, US) for organic compound
(PAHs) and total carbon (TC is the sum of elemental carbon and
organic carbon in this paper), and the other with organic mem-
brane filters (PALL, Washington, US) for inorganic elements. The
diameter and porosity of the membranes were 47 mm and
0.3 lm, respectively. The filters were weighed before and after
sampling, and the used filters were stored in darkness at �18 �C
until extraction. To avoid contamination, the filters were handled
by wearing one-time gloves or using tweezers [28].

Concentrations of 15 inorganic elements (Na, Mg, Al, Si, S, K, Ca,
V, Mn, Fe, Co, Ni, Cu, Zn and Pb) in the extracts were measured by
Inductively Coupled Plasma–Atomic Emission Spectrometry
(ICP-9000, Thermo Jarrell-Ash, US). The pretreatment and setup
of test were referred to Saitoh et al. [29]. Calibration of the element
concentration was performed with coal fly ash (GBW 08401)
provided by the National Institute of Metrology P.R. China as a
standard reference material. The results of DPM compositions were
considered acceptable when the deviation was within ±15% of the
certified/reference values for major elements (concentra-
tions>1 mg g�1) and within 2-fold for minor elements. Concentra-
tions of total carbon in the extracts were analyzed by a thermal
optical reflectance carbon analyzer (DRI, US), referring to the meth-
od described in Fung et al. [30].

Concentrations of 16 p-PAHs (Naphthalene, acenaphthylene,
acenaphthene, fluorene, phenanthrene, anthracene, fluoranthene,
pyrene, benzo[a]anthracene, chrysene, benzo[b]fluoranthene,
a]anthracene + chrysene) in this and other studies.

enzo[a]anthracene/(benzo[a]anthracene + chrysene) Reference

[38]
.22–0.55 [39]
.49 [40]

.5 This research

.38–0.64 [39]

.92 [22]

.73 [40]



Table 6
Correlation coefficients among the concentrations of p-PAHs in DPM (bold numbers indicate p 6 0.05).

Group of isomers PAHs 2 3 4 5 6 7 8 9 10 11 12

Naphthalene (1) 0.44 0.44 0.50 0.53 0.03 0.46 -0.29 0.51 0.35 0.35 0.35
Acenaphthylene (2) 0.74 0.85 0.87 �0.36 �0.31 �0.05 �0.25 �0.42 �0.43 �0.41
Fluorene (3) 0.95 0.95 �0.41 �0.54 �0.23 �0.41 0.15 0.14 0.16

Group(phenanthrene, anthracene) Phenanthrene (4) >0.99 �0.57 �0.52 �0.35 �0.43 �0.10 �0.11 �0.08
Anthracene (5) �0.51 �0.47 �0.30 �0.37 �0.08 �0.09 �0.07

Group(fluoranthene, pyrene) Fluoranthene (6) 0.62 0.80 0.77 0.39 0.40 0.39
Pyrene (7) 0.14 0.93 0.30 0.31 0.29

Group(benzo[a]anthracene, chrysene) Benzo[a]anthracene (8) 0.36 �0.06 �0.06 �0.06
Chrysene (9) 0.37 0.38 0.36

Group(benzo[b]fluoranthene,benzo[k]fluoranthene, benzo[a]pyrene) Benzo[b]fluoranthene (10) >0.99 >0.99
Benzo[k]fluoranthene (11) >0.99
Benzo[a]pyrene (12)
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benzo[k]fluoranthene, benzo[a]pyrene, indeno[1, 2, 3-cd]pyrene,
dibenzo[a,h]anthracene and benzo[g,h,i]perylene) in the extracts
were measured by Gas Chromatography–Mass Spectrometry
(GC8000Top-Voyager, Finnigan, US) following USEPA Method TO-
13A [31]. GC (gas chromatography) inject port were keeping
280 �C. GC oven was programmed with an initial temperature of
70 �C, held for 2 min, elevated at rate of 10 �C/min to 260 �C, and
then to 300 �C at 5 �C/min and held for 8 min. The transfer line be-
tween GC and MSD (mass spectrometer detector) were held 300 �C.
The MSD was operated under the following condition: electron im-
pact mode with energy of 70 eV, mass range: 50–300 lm. Selected
Ion Mode (SIM) was used for quantitative analysis. When the con-
centrations of internal standards (Supelco, US) were 0.5 mg L�1, the
recovery for each PAH species varied between 86% and 95%, and
the relative standard deviation was less than 10%.
2.5. Quality assurance (QA)/quality control (QC)

The QA/QC protocol of the monitoring sequence was followed at
all stages from sample preparation to chemical analysis. Blank field
filters were placed unopened next to the samplers for the duration
of sampling, after which they were returned to the laboratory and
treated as regular samples to ensure there was no significant back-
ground interference. A blank sample was run for each chemical
analysis. Results showed that all analyte concentrations in the
blank quartz fiber membranes and blank organic membrane filters
were less than the method detection limits (MDL).
2.6. Data analysis

Species with lab reported concentrations under the MDL in all
six tests were excluded from further analysis. Lab reported extract
concentrations were used to calculate weight percentage (wt%) of
TC, inorganic elements and PAHs in total DPM mass, as well as
wt% of PAHs in total p-PAHs mass. The concentration ratios of
fluoranthene/(fluoranthene + pyrene) and benzo[a]anthracene/
(benzo[a]anthracene + chrysene) were also calculated using the
wt% of those species in DPM.

Pearson correlation analysis among p-PAHs as well as between
p-PAHs and inorganic elements was conducted. The p-PAHs were
classified into several groups on the basis of their chemical
formulas.
3. Results and discussion

3.1. Effects of engine speed and engine load on components in DPM

TC was the main content and contributed 70–92% of the DPM
mass. The wt% of TC was higher at 100% engine load than at 60%
engine load (92% vs. 78% at 1000 rpm, 87% vs. 70% at 1200 rpm,
90% vs. 76% at 1600 rpm).

Table 3 summarizes the wt% of the 15 elements in total DPM
mass from the six tests. The wt% of inorganic elements was higher
at 100% engine load (7.5 ± 1%) than at 60% engine load (5.1 ± 0.5%).
Ca, S, Na, and Si combined accounted for 75 ± 2% of inorganic ele-
ments. The dominant elements in DPM observed in this study were
similar with that reported by Ntziachristos et al. [32]. Their study,
conducted next to a busy Southern California freeway with heavy
diesel vehicle emissions, showed that S was the most abundant
element in ambient PM, followed by Na, Fe and Ca [32].

Mixed results were observed for the effect of the engine load on
p-PAHs. The proportion of p-PAHs in DPM (Table 3) were higher at
100% engine load with high and low speeds (1000 rpm, 1600 rpm),
but lower at medina speed (1200 rpm).

3.2. Characteristics of p-PAHs in DPM

Among the sixteen p-PAH detected, the concentrations of the
following four (acenaphthene, indeno[1, 2, 3-cd]pyrene, dibenzo
[a,h]anthracene and benzo[g,h,i]perylene) were below the MDL.
The remaining 12 p-PAHs contributed a small fraction
(0.034 ± 0.013%) of the DPM mass, which is consistent with previ-
ous studies (e.g. 0.046% in He et al. [33]). Fig. 2 illustrates the wt%
of the p-PAHs in the six tests. The two-ring, three-ring, four-ring,
and five-ring p-PAHs accounted for 11 ± 10%, 54 ± 25%, 27 ± 19%,
9 ± 5% of the total p-PAHs mass, respectively. The proportions of
four-ring and five-ring p-PAHs were consistent with those ob-
tained by Shah et al. [34] (four-ring p-PAHs: 29 ± 16%, five-ring
p-PAHs: 11 ± 9%). The proportion of two-ring p-PAHs was lower
and three-rings p-PAHs was higher than those obtained by Shah
et al. [34] (two-ring p-PAHs: 35 ± 26%, three-ring p-PAHs:
26 ± 12%). Ho et al. [20] showed the proportions of two-ring and
four-ring PAHs were 18 ± 20% and 48 ± 46%, higher than these in
our research. The three-ring PAHs was 29 ± 12%, lower than in
our research, and five-ring PAHs was 9 ± 15%, similar with our re-
search. The difference of these PAHs proportions might be resulted
from the diversity of testing methods, engine type and driving
mode.

The proportion of three-ring p-PAHs was higher (63 ± 15%) at
100% engine load than those at 60% engine load (45 ± 7%). The
opposite trend was observed for four-ring p-PAHs, 15 ± 9% at
100% engine load and 38 ± 1% at 60% engine load. However, the
relationships of proportions of two-ring and five-ring p-PAHs and
engine load were not obvious.

Table 4 compares wt% of p-PAHs in total PAHs observed in this
and in other studies. The proportions of naphthalene, acenaphthyl-
ene, fluorene, fluoranthene, pyrene, benzo[b]fluoranthene and
benzo[k]fluoranthene in our study were similar to those by Ho
et al. [20]. The proportions of acenaphthylene, phenanthrene,
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fluoranthene, pyrene, benzo[a]anthracene, chrysene were also
similar to that reported by Shah et al. [34]. However, anthracene-
and benzo[a]pyrene were higher than those by Ho et al. [20] and
Shah et al. [34]. Acenaphthene, indeno[1, 2, 3-cd]pyrene, dibenzo
[a,h]anthracene and benzo[g,h,i]perylene were not detected in
our research, these four PAHs were accounted for 13% and 12% in
researches conducted by Ho et al. [20] and Shah et al. [34].

Due to limitations of the samplers, only p-PAHs were moni-
tored. Although 2- and 3-ring PAHs (e.g. naphthalene, acenaphthyl-
ene and acenaphthene) were predominant in the gas-phase, 4- to
6-ring PAHs (e.g. benzo[a]anthracene, chrysene, benzo[b]fluo-
ranthene and benzo[g,h,i]perylene) mainly existed in the particu-
late-phase [20,35]. Previous studies indicated that many low
molecular PAHs were in the gas phase, however most carcinogenic
PAHs were found in the particulate phase, especially in fine partic-
ulate matter [5,34,36].

Diagnostic ratios obtained in this and previous studies are pre-
sented in Table 5. The fluoranthene/(fluoranthene + pyrene) ratios
ranged from 0.25 to 0.5 in the six tests, with a mean value of 0.37.
It is below the ratio found in Manoli et al. [22] (0.43). The
benzo[a]anthracene/(benzo[a]anthracene + chrysene) ratio (0.5
and only measured in test #6) found in this study is in the range
of Nelson [36] but well below values found in Manoli et al. [22]
and Geller et al. [37].
3.3. Correlation among PAHs in DPM

Correlation coefficients of wt% of PAHs in DPM are presented in
Table 6. Because PAH isomers (i.e. having the same chemical for-
mula) have similar properties and origins, correlations between
isomers having the same number of rings or not were found. The
weight percentages of 3-ring isomers (phenanthrene and anthra-
cene) and 4- 5-rings isomers (benzo[a]pyrene, benzo[b]fluoranth-
ene, benzo[k]fluoranthene) were strongly correlated (r > 0.99,
p < 0.05) with each other. Ho et al. [20] also reported strong corre-
lation among p-PAH emission factors in group (benzo[a]pyrene,
benzo[b]fluoranthene, benzo[k]fluoranthene) (r P 0.97). In Geller
et al.’s [37] study, correlation of p-PAH concentrations were very
strong (r = 0.99) in group (benzo[a]anthracene, chrysene), and rel-
atively strong in group (phenanthrene, anthracene) (r = 0.68),
while weak correlation was observed in group (fluoranthene,
pyrene).

There were other strong correlations (ranging from 0.74 to 0.95)
between wt% of p-PAHs. Acenaphthylene was correlated with flu-
orene, phenanthrene and anthracene, fluoranthene with
benzo[a]anthracene and chrysene, pyrene with chrysene.
3.4. Correlation between the contents of inorganic elements and PAHs
in DPM

Correlation between wt% of inorganic elements and p-PAHs in
total DPM are listed in Table 7. PAH group (phenanthrene, anthra-
cene) had strong positive correlation with Si, S, K, Ni and Pb
(r P 0.74, p < 0.05) and negative correlation with Fe(r 6 �0.77,
p < 0.05). Similarly, Fe had significant positive correlation with
PAH group (fluoranthene, pyrene) (r P 0.84, p < 0.05), and Mg, Al,
Si had significant negative correlation with this PAH group
(r 6 �0.81, p < 0.05). The PAH group (benzo[a]pyrene, benzo[b]flu-
oranthene, benzo[k]fluoranthene) had no significant correlation
with any of the 15 inorganic elements. Acenaphthylene and fluo-
rene had strong positive correlation between S, K and Ni
(r > 0.76, p < 0.05), while acenaphthylene was also positively corre-
lated with Pb (r = 0.95, p < 0.05), and fluorene was negatively cor-
related with Fe (r = �0.74, p < 0.05). Geller et al. [37] had also
observed strong correlations between concentrations of some
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inorganic elements (Li, Be, Ti, Ni, Zn) and some organic species (ele-
ment carbon, light PAHs: naphthalene, pyrene and phenanthrene).
4. Conclusions

This paper presents the results of the chemical characteristics of
the inorganic and organic components of DPM using dynamometer
testing. It provides original data on the correlation between
p-PAHs and inorganic elements determined from diesel engine
emissions. The data and analysis contribute in the completion of
the knowledge concerning the composition of particles emitted
by diesel engines.

It was found that TC was the major constituent and that it ac-
counted for 82 ± 9% of the total DPM mass, much higher than the
15 inorganic elements (6.3 ± 1.4%), and 12 PAHs (0.034 ± 0.013%).
Ca, Na, S and Si accounted for 75 ± 2% of total inorganic element
mass. Weight percentage of TC and total inorganic elements in-
creased with engine load (60% vs. 100%). The weight percentages
of the 12 p-PAHs in total p-PAHs were in agreement with previous
studies. The three-ring and four-ring p-PAHs constituted 54 ± 25%
and 27 ± 19% of the total p-PAHs mass, respectively, followed by
two-ring p-PAHs (11 ± 10%) and five-ring (9 ± 5%). The concentra-
tion ratios of fluoranthene/(fluoranthene + pyrene) and benzo[a]
anthracene/(benzo[a]anthracene + chrysene) were below or at the
lower range considered indicative of diesel vehicle emissions in
previous ambient studies.

In some group of isomers, including PAH group (phenanthrene,
anthracene), and group (benzo[a]pyrene, benzo[b]fluoranthene,
benzo[k]fluoranthene), the weight percentages (in DPM) were
highly positively correlated with each other, but not in all isomer
p-PAHs groups. Some p-PAHs correlated with those had the same
number of rings or differed by one ring. Some inorganic elements
had strong correlation with some PAH groups, including Si, S, K,
Ni, Pb and Fe with PAH group (phenanthrene, anthracene), as well
as Mg, Al, Si and Fe with PAH group (fluoranthene, pyrene).

Future studies should sample gas-phase PAHs (g-PAHs, PAHs
existed in gas phase) and analyze the correlation between g-PAHs
and inorganic elements. Furthermore, on-board testing system
could be used to fully characterize pollutant emissions from vehi-
cles. The test results should be expressed as emission factors (i.e.
emissions per km travelled or emissions per amount of fuel con-
sumed). Differences and similarities of these correlations also
should be analyzed between on-board testing and dynamometer
testing.
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